

General Description

The MAX7030 crystal-based, fractional-N transceiver is designed to transmit and receive ASK/OOK data at factory-preset carrier frequencies of 315MHz, 345MHz[†], or 433.92MHz with data rates up to 33kbps (Manchester encoded) or 66kbps (NRZ encoded). This device generates a typical output power of +10dBm into a 50Ω load, and exhibits typical sensitivity of -114dBm. The MAX7030 features separate transmit and receive pins (PAOUT and LNAIN) and provides an internal RF switch that can be used to connect the transmit and receive pins to a common antenna.

The MAX7030 transmit frequency is generated by a 16bit, fractional-N, phase-locked loop (PLL), while the receiver's local oscillator (LO) is generated by an integer-N PLL. This hybrid architecture eliminates the need for separate transmit and receive crystal reference oscillators because the fractional-N PLL is preset to be 10.7MHz above the receive LO. Retaining the fixed-N PLL for the receiver avoids the higher current-drain requirements of a fractional-N PLL and keeps the receiver current drain as low as possible. All frequencygeneration components are integrated on-chip, and only a crystal, a 10.7MHz IF filter, and a few discrete components are required to implement a complete antenna/digital data solution.

The MAX7030 is available in a small, 5mm x 5mm, 32pin thin QFN package, and is specified to operate over the automotive -40°C to +125°C temperature range.

†Consult factory for availability.

Applications

2-Way Remote Keyless Entry

Security Systems

Home Automation

Remote Controls

Remote Sensing

Smoke Alarms

Garage Door Openers

Local Telemetry Systems

Features

- ♦ +2.1V to +3.6V or +4.5V to +5.5V Single-Supply Operation
- ♦ Single-Crystal Transceiver
- **♦** Factory-Preset Frequency (No Serial Interface Required)
- **♦ ASK/OOK Modulation**
- ♦ +10dBm Output Power into 50Ω Load
- ♦ Integrated TX/RX Switch
- ♦ Integrated Transmit and Receive PLL, VCO, and Loop Filter
- ♦ > 45dB Image Rejection
- ◆ Typical RF Sensitivity*: -114dBm
- ♦ Selectable IF Bandwidth with External Filter
- ♦ < 12.5mA Transmit-Mode Current
- ♦ < 6.7mA Receive-Mode Current
- ♦ < 800nA Shutdown Current
 </p>
- ♦ Fast-On Startup Feature, <250µs
- ♦ Small, 32-Pin, Thin QFN Package

*0.2% BER, 4kbps Manchester-encoded data, 280kHz IF BW

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX7030_ATJ	-40°C to +125°C	32 Thin QFN-EP**	T3255-3

^{**}EP = Exposed paddle.

Note: The MAX7030 is available with factory-preset operating frequencies. See the Product Selector Guide for complete part numbers.

Product Selector Guide

PART	CARRIER FREQUENCY (MHz)
MAX7030LATJ	315
MAX7030MATJ	345
MAX7030HATJ	433.92

Pin Configuration, Typical Application Circuit, and Functional Diagram appear at end of data sheet.

ABSOLUTE MAXIMUM RATINGS

HV _{IN} to GND0.3V to +6.0V PAV _{DD} , AV _{DD} , DV _{DD} to GND0.3V to +4.0V	Continuous Power Dissipation (T _A = +70°C) 32-Pin Thin QFN (derate 21.3mW/°C
ENABLE, T/R, DATA, AGC0, AGC1,	above +70°C)1702mW
AGC2 to GND0.3V to (HV _{IN} + 0.3V)	Operating Temperature Range40°C to +125°C
All Other Pins to GND0.3V to (_V _{DD} + 0.3V)	Storage Temperature Range65°C to +150°C
,— 35	Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(Typical\ Application\ Circuit,\ 50\Omega\ system\ impedance,\ AV_{DD}=DV_{DD}=HV_{IN}=PAV_{DD}=+2.1V\ to\ +3.6V,\ f_{RF}=315MHz,\ 345MHz,\ or\ 433.92MHz,\ T_A=-40^{\circ}C\ to\ +125^{\circ}C,\ unless\ otherwise\ noted.$ Typical values are at $AV_{DD}=DV_{DD}=HV_{IN}=PAV_{DD}=+2.7V,\ T_A=+25^{\circ}C,\ unless\ otherwise\ noted.$) (Note 1)

PARAMETER	SYMBOL	CONDITI	ONS	MIN	TYP	MAX	UNITS
Supply Voltage (3V Mode)	V _{DD}	HV _{IN} , PAV _{DD} , AV _{DD} , and to power supply	d DV _{DD} connected	2.1	2.7	3.6	V
Supply Voltage (5V Mode)	HVIN	PAV _{DD} , AV _{DD} , and DV _D from HV _{IN} , but connected		4.5	5.0	5.5	V
		Transmit mode, PA off,	f _{RF} = 315MHz		3.5	5.4	
		V _{DATA} at 0% duty cycle (Note 2)	f _{RF} = 434MHz		4.3	6.7	
		Transmit mode, VDATA	f _{RF} = 315MHz		7.6	12.3	
		at 50% duty cycle (Notes 3, 4)	f _{RF} = 434MHz		8.4	13.6	mA
		Transmit mode, V _{DATA}	f _{RF} = 315MHz		11.6	19.1	
		at 100% duty cycle (Note 2)	f _{RF} = 434MHz		12.4	20.4	
Supply Current		T _A < +85°C, typ at +25°C (Note 4)	Receiver 315MHz		6.1	7.9	
	I _{DD}		Receiver 434MHz		6.4	8.3	
			Deep-sleep (3V mode)		0.8	8.8	
			Deep-sleep (5V mode)		2.4	10.9	μΑ
		T _A < +125°C, typ at +125°C	Receiver 315MHz		6.4	8.2	mA
			Receiver 434MHz		6.7	8.4	
			Deep-sleep (3V mode)		8.0	34.2	
		(Note 2)	Deep-sleep (5V mode)		14.9	39.3	μA
Voltage Regulator	VREG	HV _{IN} = 5V, I _{LOAD} = 15mA			3.0		V
DIGITAL I/O	•	•					•
Input-High Threshold	VIH	(Note 2)		0.9 x HV _{IN}			V
Input-Low Threshold	VIL	(Note 2)	(Note 2)			0.1 x HV _{IN}	V

DC ELECTRICAL CHARACTERISTICS (continued)

 $(Typical\ Application\ Circuit,\ 50\Omega\ system\ impedance,\ AV_{DD}=DV_{DD}=HV_{IN}=PAV_{DD}=+2.1V\ to\ +3.6V,\ f_{RF}=315MHz,\ 345MHz,\ or\ 433.92MHz,\ T_{A}=-40^{\circ}C\ to\ +125^{\circ}C,\ unless\ otherwise\ noted.$ Typical values are at $AV_{DD}=DV_{DD}=HV_{IN}=PAV_{DD}=+2.7V,\ T_{A}=+25^{\circ}C,\ unless\ otherwise\ noted.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Pulldown Sink Current		AGC0-2, ENABLE, T/\overline{R} , DATA ($HV_{IN} = 5.5V$)		20		μΑ
Output-Low Voltage	V _{OL}	I _{SINK} = 500µA		0.15		V
Output-High Voltage	VoH	ISOURCE = 500µA		HV _{IN} - 0.26	3	V

AC ELECTRICAL CHARACTERISTICS

(*Typical Application Circuit*, 50Ω system impedance, $PAV_{DD} = AV_{DD} = DV_{DD} = HV_{IN} = +2.1V$ to +3.6V, $f_{RF} = 315MHz$, 345MHz, or 433.92MHz, $T_{A} = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $PAV_{DD} = AV_{DD} = DV_{DD} = HV_{IN} = +2.7V$, $T_{A} = +25^{\circ}C$, unless otherwise noted.) (Note 1)

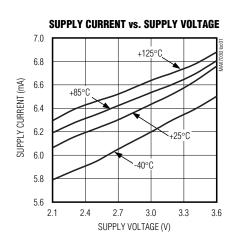
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
GENERAL CHARACTERISTICS							
Frequency Range					315/345/ 433.92		MHz
Maximum Input Level	PRFIN				0		dBm
Transmit Efficiency 100% Duty		f _{RF} = 315MHz (Note 6)			32		%
Cycle		f _{RF} = 434MHz (Note 6)			30		/6
Transmit Efficiency 50% Duty		f _{RF} = 315MHz (Note 6)			24		%
Cycle		f _{RF} = 434MHz (Note 6)			22		/0
		ENABLE or T/R transition low to h transmitter frequency settled to w 50kHz of the desired carrier	•		200		
Power-On Time	ton	ENABLE or T/R transition low to high, transmitter frequency settled to within 5kHz of the desired carrier		350		μs	
		ENABLE transition low to high, or transition high to low, receiver sta (Note 5)			250		
RECEIVER	•	•	'				•
Sensitivity		0.2% BER, 4kbps Manchester data rate, 280kHz IF BW,	315MHz		-114		- dBm
Sensitivity		average RF power	434MHz		-113		UDIII
Image Rejection					46		dB
POWER AMPLIFIER							
		$T_A = +25$ °C (Note 4)		4.6	10.0	15.5	
Output Power	Pout	$T_A = +125$ °C, $PAV_{DD} = AV_{DD} = [HV_{IN} = +2.1V (Note 2)]$	OV _{DD} =	3.9	6.7		dBm
		$T_A = -40$ °C, $PAV_{DD} = AV_{DD} = DV_{DD} = HV_{IN} = +3.6V$ (Note 4)			13.1	15.8	
Modulation Depth		,			82		dB
Maximum Carrier Harmonics		With output-matching network			-40		dBc
Reference Spur					-50		dBc

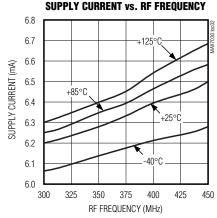
AC ELECTRICAL CHARACTERISTICS (continued)

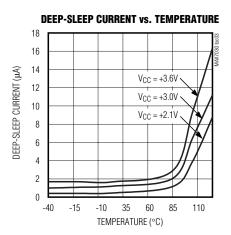
 $(Typical\ Application\ Circuit,\ 50\Omega\ system\ impedance,\ PAV_{DD}=AV_{DD}=DV_{DD}=HV_{IN}=+2.1V\ to\ +3.6V,\ f_{RF}=315MHz,\ 345MHz,\ or\ 433.92MHz,\ T_A=-40^{\circ}C\ to\ +125^{\circ}C,\ unless\ otherwise\ noted.\ Typical\ values\ are\ at\ PAV_{DD}=AV_{DD}=DV_{DD}=HV_{IN}=+2.7V,\ T_A=+25^{\circ}C,\ unless\ otherwise\ noted.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP MAX	UNITS
PHASE-LOCKED LOOP	l.	•		•	
Transmit VCO Gain	Kvco			340	MHz/V
Transmit PLL Phase Noise		10kHz offset, 200kH	Hz loop BW	-68	dBc/Hz
Transmit fle friase noise		1MHz offset, 200kH	Iz loop BW	-98	UBC/HZ
Receive VCO Gain				340	MHz/V
Receive PLL Phase Noise		10kHz offset, 500kH	Hz loop BW	-80	dBc/Hz
Theceive i LL i flase Noise		1MHz offset, 500kH	Iz loop BW	-90	UDC/11Z
Loop Bandwidth		Transmit PLL		200	kHz
Loop Bandwidth		Receive PLL		500	KI IZ
Reference Frequency Input Level				0.5	V _{P-P}
LOW-NOISE AMPLIFIER/MIXER (Note 8)				
LNA Input Impedance	Z _{INLNA}	Normalized to 50Ω	$f_{RF} = 315MHz$	1 - j4.7	
Livi input impedance	ZINLINA	1101111411204 10 3032	$f_{RF} = 434MHz$	1- j3.3	
		High-gain state	$f_{RF} = 315MHz$	50	
Voltage-Conversion Gain		riigii-gairi state	$f_{RF} = 434MHz$	45	dB
voltage-conversion dam		Low-gain state	$f_{RF} = 315MHz$	13	uБ
		Low-gain state	$f_{RF} = 434MHz$	9	
Input-Referred, 3rd-Order	IIP3	High-gain state		-42	dBm
Intercept Point	111 3	Low-gain state		-6	UDIII
Mixer-Output Impedance				330	Ω
LO Signal Feedthrough to Antenna				-100	dBm
RSSI	l .				
Input Impedance				330	Ω
Operating Frequency	fıF			10.7	MHz
3dB Bandwidth				10	MHz
Gain				15	mV/dB
ANALOG BASEBAND	•	•		-	•
Maximum Data-Filter Bandwidth				50	kHz
Maximum Data-Slicer Bandwidth				100	kHz
Maximum Peak-Detector Bandwidth				50	kHz
Mayina ya Data D-t-		Manchester coded		33	ـاډا
Maximum Data Rate		Nonreturn to zero (NRZ)		66	kbps

AC ELECTRICAL CHARACTERISTICS (continued)

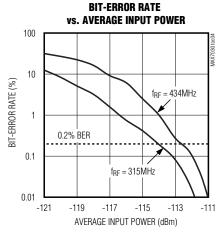

(Typical Application Circuit, 50Ω system impedance, PAV_{DD} = AV_{DD} = DV_{DD} = HV_{IN} = +2.1V to +3.6V, f_{RF} = 315MHz, 345MHz, or 433.92MHz, T_A = -40°C to +125°C, unless otherwise noted. Typical values are at PAV_{DD} = AV_{DD} = DV_{DD} = HV_{IN} = +2.7V, T_A = +25°C, unless otherwise noted.) (Note 1)

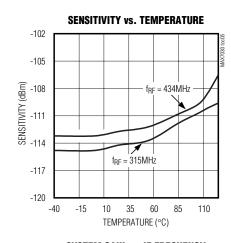

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
CRYSTAL OSCILLATOR				
Crystal Frequency	fxtal		(f _{RF} -10.7) / 24	MHz
Maximum Crystal Inductance			50	mH
Frequency Pulling by V _{DD}			2	ppm/V
Crystal Load Capacitance		(Note 7)	4.5	pF

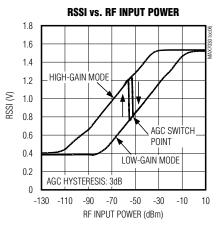

- Note 1: Supply current, output power, and efficiency are greatly dependent on board layout and PAOUT match.
- Note 2: 100% tested at $T_A = +125$ °C. Guaranteed by design and characterization overtemperature.
- Note 3: 50% duty cycle at 10kHz ASK data (Manchester coded).
- Note 4: Guaranteed by design and characterization. Not production tested.
- Note 5: Time for final signal detection; does not include baseband filter settling.
- Note 6: Efficiency = Pout / (VDD x IDD).
- Note 7: Dependent on PC board trace capacitance.
- **Note 8:** Input impedance is measured at the LNAIN pin. Note that the impedance at 315MHz includes the 12nH inductive degeneration from the LNA source to ground. The impedance at 434MHz includes a 10nH inductive degeneration connected from the LNA source to ground. The equivalent input circuit is 50Ω in series with ~2.2pF. The voltage conversion is measured with the LNA input-matching inductor, the degeneration inductor, and the LNA/mixer tank in place, and does not include the IF filter insertion loss.

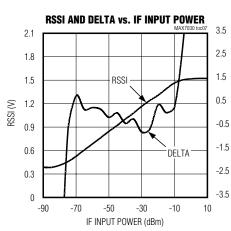
Typical Operating Characteristics

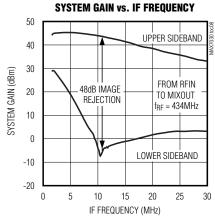
(Typical Operating Circuit, $PAV_{DD} = AV_{DD} = DV_{DD} = HV_{IN} = +3.0V$, $f_{RF} = 433.92$ MHz, IF BW = 280kHz, 4kbps Manchester encoded, 0.2% BER, $T_A = +25$ °C, unless otherwise noted.)

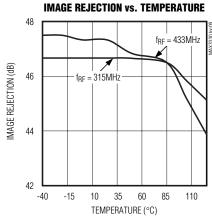


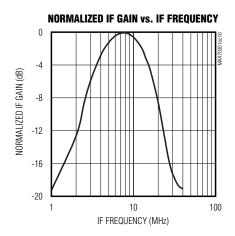


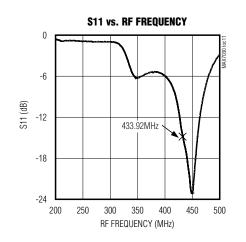

Typical Operating Characteristics (continued)

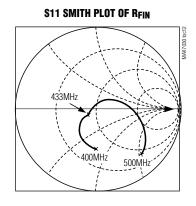

(Typical Operating Circuit, $PAV_{DD} = AV_{DD} = DV_{DD} = HV_{IN} = +3.0V$, $f_{RF} = 433.92$ MHz, IF BW = 280kHz, 4kbps Manchester encoded, 0.2% BER, $T_A = +25^{\circ}$ C, unless otherwise noted.)



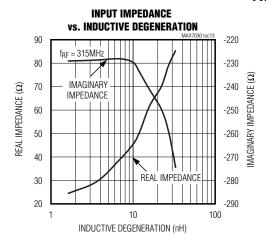


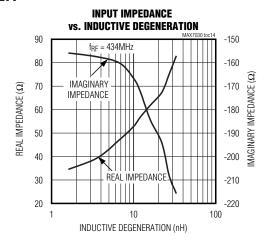






DELTA (%)

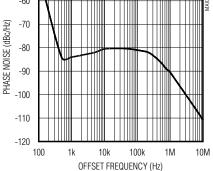


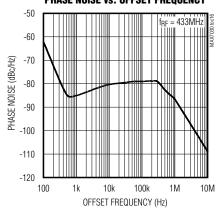


Typical Operating Characteristics (continued)

(Typical Operating Circuit, PAVDD = AVDD = DVDD = HVIN = +3.0V, fRF = 433.92MHz, IF BW = 280kHz, 4kbps Manchester encoded, 0.2% BER, $T_A = +25^{\circ}C$, unless otherwise noted.)

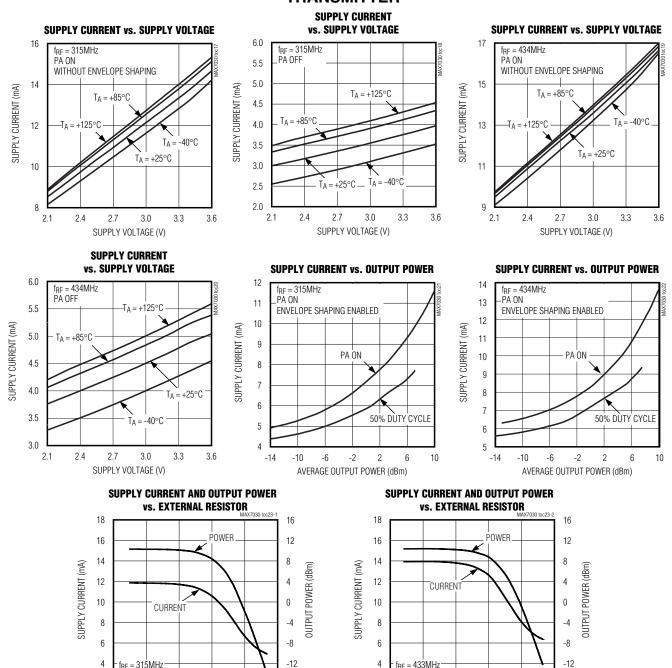
RECEIVER




-60 -70 -80

-50

PHASE NOISE vs. OFFSET FREQUENCY


PHASE NOISE vs. OFFSET FREQUENCY

_Typical Operating Characteristics (continued)

(Typical Operating Circuit, $PAV_{DD} = AV_{DD} = DV_{DD} = HV_{IN} = +3.0V$, $f_{RF} = 433.92$ MHz, IF BW = 280kHz, 4kbps Manchester encoded, 0.2% BER, $T_A = +25^{\circ}$ C, unless otherwise noted.)

TRANSMITTER

PA ON

EXTERNAL RESISTOR (Ω)

2

0.1

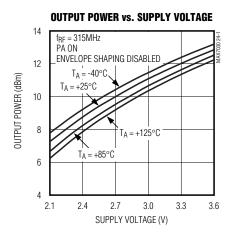
-16

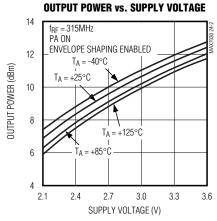
10k

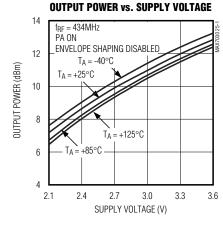
PA ON

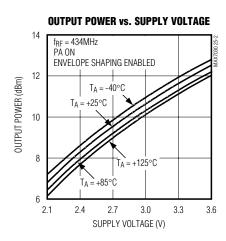
100

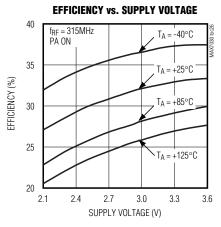
EXTERNAL RESISTOR (Ω)

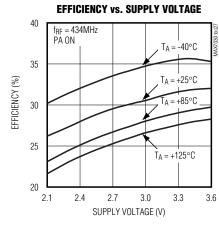

10k


0.1

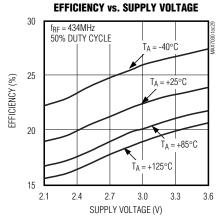

Typical Operating Characteristics (continued)

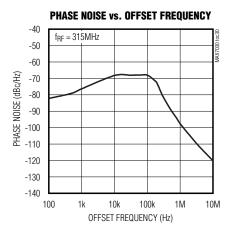

(Typical Operating Circuit, $PAV_{DD} = AV_{DD} = DV_{DD} = HV_{IN} = +3.0V$, $f_{RF} = 433.92$ MHz, IF BW = 280kHz, 4kbps Manchester encoded, 0.2% BER, $T_A = +25$ °C, unless otherwise noted.)

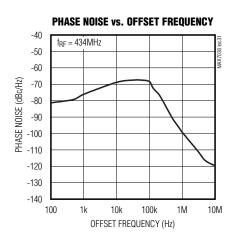

TRANSMITTER

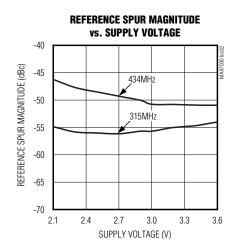


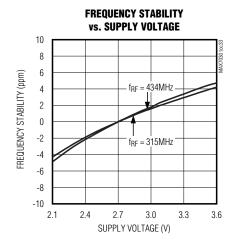











_Typical Operating Characteristics (continued)

(Typical Operating Circuit, $PAV_{DD} = AV_{DD} = DV_{DD} = HV_{IN} = +3.0V$, $f_{RF} = 433.92$ MHz, IF BW = 280kHz, 4kbps Manchester encoded, 0.2% BER, $T_A = +25^{\circ}$ C, unless otherwise noted.)

TRANSMITTER

Pin Description

PIN	NAME	FUNCTION
1	PAV _{DD}	Power-Amplifier Supply Voltage. Bypass to GND with 0.01µF and 220pF capacitors placed as close to the pin as possible.
2	ROUT	Envelope-Shaping Output. ROUT controls the power-amplifier envelope's rise and fall times. Connect ROUT to the PA pullup inductor or optional power-adjust resistor. Bypass the inductor to GND as close to the inductor as possible with 680pF and 220pF capacitors, as shown in the <i>Typical Application Circuit</i> .
3	TX/RX1	Transmit/Receive Switch Throw. Drive T/\overline{R} high to short TX/RX1 to TX/RX2. Drive T/\overline{R} low to disconnect TX/RX1 from TX/RX2. Functionally identical to TX/RX2.
4	TX/RX2	Transmit/Receive Switch Pole. Typically connected to ground. See the Typical Application Circuit.
5	PAOUT	Power-Amplifier Output. Requires a pullup inductor to the supply voltage (or ROUT if envelope shaping is desired), which can be part of the output-matching network to an antenna.
6	AV _{DD}	Analog Power-Supply Voltage. AV _{DD} is connected to an on-chip +3.0V regulator in 5V operation. Bypass AV _{DD} to GND with a 0.1µF and 220pF capacitor placed as close to the pin as possible.
7	LNAIN	Low-Noise Amplifier Input. Must be AC-coupled.
8	LNASRC	Low-Noise Amplifier Source for External Inductive Degeneration. Connect an inductor to GND to set the LNA input impedance.
9	LNAOUT	Low-Noise Amplifier Output. Must be connected to AV _{DD} through a parallel LC tank filter. AC-couple to MIXIN+.
10	MIXIN+	Noninverting Mixer Input. Must be AC-coupled to the LNA output.
11	MIXIN-	Inverting Mixer Input. Bypass to AVDD with a capacitor as close to the LNA LC tank filter as possible.
12	MIXOUT	330Ω Mixer Output. Connect to the input of the 10.7MHz filter.
13	IFIN-	Inverting 330Ω IF Limiter-Amplifier Input. Bypass to GND with a capacitor.
14	IFIN+	Noninverting 330Ω IF Limiter-Amplifier Input. Connect to the output of the 10.7MHz IF filter.
15	PDMIN	Minimum-Level Peak Detector for Demodulator Output
16	PDMAX	Maximum-Level Peak Detector for Demodulator Output
17	DS-	Inverting Data Slicer Input
18	DS+	Noninverting Data Slicer Input
19	OP+	Noninverting Op-Amp Input for the Sallen-Key Data Filter
20	DF	Data-Filter Feedback Node. Input for the feedback capacitor of the Sallen-Key data filter.
21, 25	N.C.	No Connection. Do not connect to this pin.
22	T/R	Transmit/Receive. Drive high to put the device in transmit mode. Drive low or leave unconnected to put the device in receive mode. It is internally pulled down.
Enable. Drive high for normal operation. Drive low or leave uncon down mode.		Enable. Drive high for normal operation. Drive low or leave unconnected to put the device into shutdown mode.
24	DATA	Receiver Data Output/Transmitter Data Input
26	DV _{DD}	Digital Power-Supply Voltage. Bypass to GND with a 0.01µF and 220pF capacitor placed as close to the pin as possible.
27	HVIN	High-Voltage Supply Input. For 3V operation, connect HV $_{\rm IN}$ to AV $_{\rm DD}$, DV $_{\rm DD}$, and PAV $_{\rm DD}$. For 5V operation, connect only HV $_{\rm IN}$ to 5V. Bypass HV $_{\rm IN}$ to GND with a 0.01 μ F and 220 μ F capacitor placed as close to the pin as possible.

Pin Description (continued)

PIN	NAME	FUNCTION
28	AGC2	AGC Enable/Dwell Time Control 2 (MSB). See Table 1. Bypass to GND with a 10pF capacitor.
29	AGC1	AGC Enable/Dwell Time Control 1. See Table 1. Bypass to GND with a 10pF capacitor.
30	AGC0	AGC Enable/Dwell Time Control 0 (LSB). See Table 1. Bypass to GND with a 10pF capacitor.
31	XTAL1	Crystal Input 1. Bypass to GND if XTAL2 is driven by an AC-coupled external reference.
32	XTAL2	Crystal Input 2. XTAL2 can be driven from an external AC-coupled reference.
EP	GND	Exposed Paddle. Solder evenly to the board's ground plane for proper operation.

Detailed Description

The MAX7030 315MHz, 345MHz, and 433.92MHz CMOS transceiver and a few external components provide a complete transmit and receive chain from the antenna to the digital data interface. This device is designed for transmitting and receiving ASK data. All transmit frequencies are generated by a fractional-N-based synthesizer, allowing for very fine frequency steps in increments of fxTAL / 4096. The receive LO is generated by a traditional integer-N-based synthesizer. Depending on component selection, data rates as high as 33kbps (Manchester encoded) or 66kbps (NRZ encoded) can be achieved.

Receiver

Low-Noise Amplifier (LNA)

The LNA is a cascode amplifier with off-chip inductive degeneration that achieves approximately 30dB of voltage gain that is dependent on both the antenna-matching network at the LNA input and the LC tank network between the LNA output and the mixer inputs.

The off-chip inductive degeneration is achieved by connecting an inductor from LNASRC to AGND. This inductor sets the real part of the input impedance at LNAIN, allowing for a more flexible match for low-input impedances such as a PC board trace antenna. A nominal value for this inductor with a 50Ω input impedance is 12nH at 315MHz and 10nH at 434MHz, but the inductance is affected by PC board trace length. LNASRC can be shorted to ground to increase sensitivity by approximately 1dB, but the input match must then be reoptimized.

The LC tank filter connected to LNAOUT consists of L5 and C9 (see the *Typical Application Circuit*). Select L5 and C9 to resonate at the desired RF input frequency. The resonant frequency is given by:

$$f = \frac{1}{2\pi\sqrt{L_{TOTAL} \times C_{TOTAL}}}$$

where LTOTAL = L5 + LPARASITICS and CTOTAL = C9 + CPARASITICS.

LPARASITICS and CPARASITICS include inductance and capacitance of the PC board traces, package pins, mixer-input impedance, LNA-output impedance, etc. These parasitics at high frequencies cannot be ignored, and can have a dramatic effect on the tank filter center frequency. Lab experimentation should be done to optimize the center frequency of the tank. The total parasitic capacitance is generally between 5pF and 7pF.

Automatic Gain Control (AGC)

When the AGC is enabled, it monitors the RSSI output. When the RSSI output reaches 1.28V, which corresponds to an RF input level of approximately -55dBm, the AGC switches on the LNA gain-reduction attenuator. The attenuator reduces the LNA gain by 36dB, thereby reducing the RSSI output by about 540mV to 740mV. The LNA resumes high-gain mode when the RSSI output level drops back below 680mV (approximately -59dBm at the RF input) for a programmable interval called the AGC dwell time (see Table 1). The AGC has a hysteresis of approximately 4dB. With the AGC function, the RSSI dynamic range is increased, allowing the MAX7030 to reliably produce an ASK output for RF input levels up to 0dBm with a modulation depth of 18dB. AGC is not required and can be disabled (see Table 1).

Table 1. AGC Dwell Time Settings for MAX7030

AGC2	AGC1	AGC0	DESCRIPTION
0	0	0	AGC disabled, high gain selected
0	0	1	K = 11
0	1	0	K = 13
0	1	1	K = 15
1	0	0	K = 17
1	0	1	K = 19
1	1	0	K = 21
1	1	1	K = 23

AGC Dwell-Time Settings

The AGC dwell timer holds the AGC in low-gain state for a set amount of time after the power level drops below the AGC switching threshold. After that set amount of time, if the power level is still below the AGC threshold, the LNA goes into high-gain state. This is important for ASK since the modulated data may have a high level above the threshold and low level below the threshold, which without the dwell timer would cause the AGC to switch on every bit.

The MAX7030 uses the three AGC control pins (AGC0, AGC1, AGC2) to set seven user-controlled, dwell-timer settings. The AGC dwell time is dependent on the crystal frequency and the bit settings of the AGC control pins. To calculate the dwell time, use the following equation:

$$Dwell Time = \frac{2^K}{f_{XTAL}}$$

where K is an odd integer in decimal from 11 to 23, determined by the control pin settings shown in Table 1.

To calculate the value of K, use the following equation and use the next integer higher than the calculated result:

K ≥ 3.3 x log₁₀ (Dwell Time x fxTAL)

For Manchester Code (50% duty cycle), set the dwell time to at least twice the bit period. For nonreturn-to-zero (NRZ) data, set the dwell to greater than the period of the longest string of zeros or ones. For example, using Manchester Code at 315MHz (fxtal = 12.679MHz) with a data rate of 2kbps (bit period = 250µs), the dwell time needs to be greater than 500µs:

$$K \ge 3.3 \times log_{10} (500 \mu s \times 12.679) \approx 12.546$$

Choose the AGC pin settings for K to be the next oddinteger value higher than 12.546, which is 13. This says that AGC1 is set high and AGC0 and AGC2 are set low.

Mixer

A unique feature of the MAX7030 is the integrated image rejection of the mixer. This eliminates the need for a costly front-end SAW filter for many applications. The advantage of not using a SAW filter is increased sensitivity, simplified antenna matching, less board space, and lower cost.

The mixer cell is a pair of double-balanced mixers that perform an IQ downconversion of the RF input to the 10.7MHz intermediate frequency (IF) with low-side injection (i.e., $f_{LO} = f_{RF} - f_{IF}$). The image-rejection circuit then combines these signals to achieve a typical 46dB of image rejection over the full temperature range. Low-side injection is required as high-side injection is not possible due to the on-chip image rejection. The IF output is driven by a source follower, biased to create a driving impedance of 330Ω to interface with an off-chip 330Ω ceramic IF filter. The voltage-conversion gain driving a 330Ω load is approximately 20dB. Note that the MIXIN+ and MIXIN- inputs are functionally identical.

Integer-N Phase-Locked Loop (PLL)

The MAX7030 utilizes a fixed-integer-N PLL to generate the receive LO. All PLL components, including the loop filter, voltage-controlled oscillator, charge pump, asynchronous 24x divider, and phase-frequency detector are integrated internally. The loop bandwidth is approximately 500kHz. The relationship between RF, IF, and reference frequencies is given by:

$$f_{REF} = (f_{RF} - f_{IF}) / 24$$

Intermediate Frequency (IF)

The IF section presents a differential 330Ω load to provide matching for the off-chip ceramic filter. The internal six AC-coupled limiting amplifiers produce an overall gain of approximately 65dB, with a bandpass filter type response centered near the 10.7MHz IF frequency with a 3dB bandwidth of approximately 10MHz. For ASK data, the RSSI circuit demodulates the IF to baseband by producing a DC output proportional to the log of the IF signal level with a slope of approximately 15mV/dB.

Data Filter

The data filter for the demodulated data is implemented as a 2nd-order, lowpass, Sallen-Key filter. The pole locations are set by the combination of two on-chip resistors and two external capacitors. Adjusting the value of the external capacitors changes the corner frequency to optimize for different data rates. Set the corner frequency in kHz to approximately 3 times the fastest expected Manchester data rate in kbps from the transmitter (1.5 times the fastest expected NRZ data rate). Keeping the corner frequency near the data rate rejects any noise at higher frequencies, resulting in an increase in receiver sensitivity.

The configuration shown in Figure 1 can create a Butterworth or Bessel response. The Butterworth filter offers a very-flat-amplitude response in the passband and a rolloff rate of 40dB/decade for the two-pole filter. The Bessel filter has a linear phase response, which works well for filtering digital data. To calculate the value of the capacitors, use the following equations, along with the coefficients in Table 2:

$$C_{F1} = \frac{b}{a(100k\Omega)(\pi)(f_C)}$$
$$C_{F2} = \frac{a}{4(100k\Omega)(\pi)(f_C)}$$

where fC is the desired 3dB corner frequency.

For example, choose a Butterworth filter response with a corner frequency of 5kHz:

$$\begin{split} C_{F1} = & \frac{1.000}{(1.414)(100k\Omega)(3.14)(5kHz)} \approx 450 pF \\ C_{F2} = & \frac{1.414}{(4)(100k\Omega)(3.14)(5kHz)} \approx 225 pF \end{split}$$

Choosing standard capacitor values changes C_{F1} to 470pF and C_{F2} to 220pF. In the *Typical Application Circuit*, C_{F1} and C_{F2} are named C16 and C17, respectively.

Data Slicer

The data slicer takes the analog output of the data filter and converts it to a digital signal. This is achieved by using a comparator and comparing the analog input to a threshold voltage. The threshold voltage is set by the voltage on the DS- pin, which is connected to the negative input of the data slicer comparator.

Numerous configurations can be used to generate the data-slicer threshold. For example, the circuit in Figure 2 shows a simple method using only one resistor and one capacitor. This configuration averages the analog output of the filter and sets the threshold to approximately 50% of that amplitude. With this configuration, the threshold automatically adjusts as the analog signal varies, minimizing the possibility for errors in the digital data. The values of R and C affect how fast the threshold tracks the analog amplitude. Be sure to keep the corner frequency of the RC circuit much lower (about 10 times) than the lowest expected data rate.

With this configuration, a long string of NRZ zeros or ones can cause the threshold to drift. This configuration works best if a coding scheme, such as Manchester coding, which has an equal number of zeros and ones, is used.

Figure 3 shows a configuration that uses the positive and negative peak detectors to generate the threshold. This configuration sets the threshold to the midpoint between a high output and a low output of the data filter.

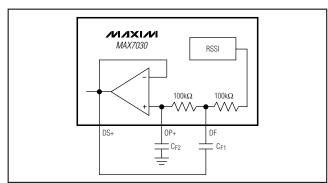


Figure 1. Sallen-Key Lowpass Data Filter

Table 2. Coefficients to Calculate CF1 and CF2

FILTER TYPE	а	b
Butterworth (Q = 0.707)	1.414	1.000
Bessel (Q = 0.577)	1.3617	0.618

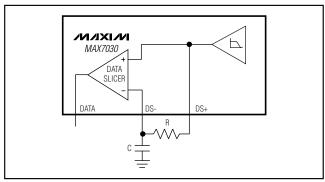


Figure 2. Generating Data-Slicer Threshold Using a Lowpass Filter

Peak Detectors

The maximum peak detector (PDMAX) and minimum peak detector (PDMIN), with resistors and capacitors shown in Figure 3, create DC output voltages equal to the high- and low-peak values of the filtered demodulated signal. The resistors provide a path for the capacitors to discharge, allowing the peak detectors to dynamically follow peak changes of the data filter output voltages.

The maximum and minimum peak detectors can be used together to form a data slicer threshold voltage at a value midway between the maximum and minimum voltage levels of the data stream (see the *Data Slicer* section and Figure 3). Set the RC time constant of the peak detector combining network to at least 5 times the data period.

If there is an event that causes a significant change in the magnitude of the baseband signal, such as an AGC gain-switch or a power-up transient, the peak detectors may "catch" a false level. If a false peak is detected, the slicing level is incorrect. The MAX7030 peak detectors correct these problems by temporarily tracking the incoming baseband filter voltage when an AGC state switch occurs, or forcing the peak detectors to track the baseband filter output voltage until all internal circuits are stable following an enable pin low-to-high transition and also T/\overline{R} pin high-to-low transition. The peak detectors exhibit a fast attack/slow decay response. This feature allows for an extremely fast startup or AGC recovery.

Transmitter

Power Amplifier (PA)

The PA of the MAX7030 is a high-efficiency, opendrain, class-C amplifier. The PA with proper outputmatching network can drive a wide range of antenna impedances, which includes a small-loop PC board

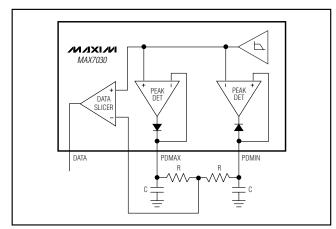


Figure 3. Generating Data-Slicer Threshold Using the Peak Detectors

trace and a 50Ω antenna. The output-matching network for a 50Ω antenna is shown in the *Typical Application Circuit*. The output-matching network suppresses the carrier harmonics and transforms the antenna impedance to an optimal impedance at PAOUT (pin 5). The optimal impedance at PAOUT is 250Ω .

When the output-matching network is properly tuned, the PA transmits power with a high overall efficiency of up to 32%. The efficiency of the PA itself is more than 46%. The output power is set by an external resistor at PAOUT, and is also dependent on the external antenna and antenna-matching network at the PA output.

Envelope Shaping

The MAX7030 features an internal envelope-shaping resistor, which connects between the open-drain output of the PA and the power supply (see the *Typical Application Circuit*). The envelope-shaping resistor slows the turn-on/turn-off of the PA in ASK mode, and results in a smaller spectral width of the modulated PA output signal.

Fractional-N Phase-Locked Loop (PLL)

The MAX7030 utilizes a fully integrated, fractional-N, PLL for its transmit frequency synthesizer. All PLL components, including the loop filter, are integrated internally. The loop bandwidth is approximately 200kHz.

Power-Supply Connections

The MAX7030 can be powered from a 2.1V to 3.6V supply or a 4.5V to 5.5V supply. If a 4.5V to 5.5V supply is used, then the on-chip linear regulator reduces the 5V supply to the 3V needed to operate the chip.

To operate the MAX7030 from a 3V supply, connect PAVDD, AVDD, DVDD, and HVIN to the 3V supply. When using a 5V supply, connect the supply to HVIN only and

connect AV_{DD}, PAV_{DD}, and DV_{DD} together. In both cases, bypass DV_{DD}, HV_{IN}, and PAV_{DD} to GND with 0.01 μ F and 220 μ F capacitors and bypass AV_{DD} to GND with 0.1 μ F and 220 μ F capacitors. Bypass T/R, ENABLE, DATA, and AGC0-2 with 10 μ F capacitors to GND. Place all bypass capacitors as close to the respective pins as possible.

Transmit/Receive Antenna Switch

The MAX7030 features an internal SPST RF switch that, when combined with a few external components, allows the transmit and receive pins to share a common antenna (see the *Typical Application Circuit*). In receive mode, the switch is open and the power amplifier is shut down, presenting a high impedance to minimize the loading of the LNA. In transmit mode, the switch closes to complete a resonant tank circuit at the PA output and forms an RF short at the input to the LNA. In this mode, the external passive components couple the output of the PA to the antenna and protect the LNA input from strong transmitted signals.

The switch state is controlled by the T/\overline{R} pin (pin 22). Drive T/\overline{R} high to put the device in transmit mode; drive T/\overline{R} low to put the device in receive mode.

Crystal Oscillator (XTAL)

The XTAL oscillator in the MAX7030 is designed to present a capacitance of approximately 3pF between the XTAL1 and XTAL2 pins. In most cases, this corresponds to a 4.5pF load capacitance applied to the external crystal when typical PC board parasitics are added. It is very important to use a crystal with a load capacitance that is equal to the capacitance of the MAX7030 crystal oscillator plus PC board parasitics. If a crystal designed to oscillate with a different load capacitance is used, the crystal is pulled away from its stated operating frequency, introducing an error in the reference frequency. Crystals designed to operate with higher differential load capacitance always pull the reference frequency higher.

In actuality, the oscillator pulls every crystal. The crystal's natural frequency is really below its specified frequency, but when loaded with the specified load capacitance, the crystal is pulled and oscillates at its specified frequency. This pulling is already accounted for in the specification of the load capacitance.

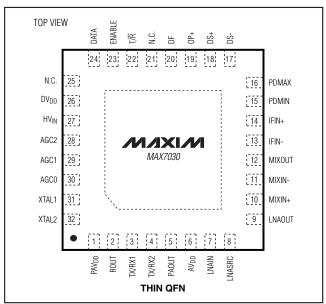
Additional pulling can be calculated if the electrical parameters of the crystal are known. The frequency pulling is given by:

$$f_P = \frac{C_m}{2} \left(\frac{1}{C_{CASE} + C_{LOAD}} - \frac{1}{C_{CASE} + C_{SPEC}} \right) \times 10^6$$

where:

fp is the amount the crystal frequency is pulled in ppm.

C_m is the motional capacitance of the crystal.


CCASE is the case capacitance.

CSPEC is the specified load capacitance.

CLOAD is the actual load capacitance.

When the crystal is loaded as specified, i.e., $C_{LOAD} = C_{SPEC}$, the frequency pulling equals zero.

Pin Configuration

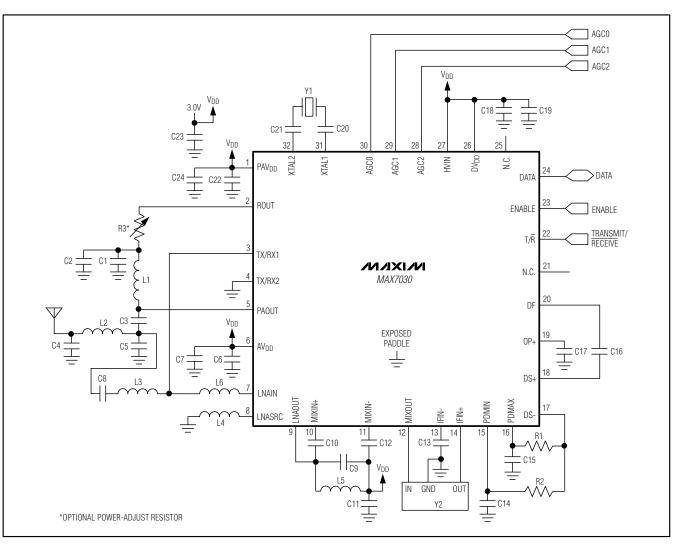
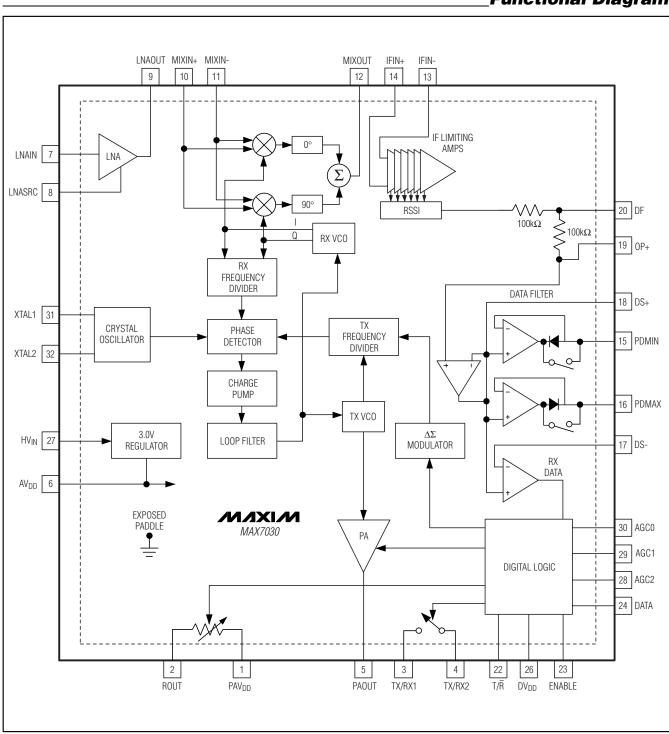


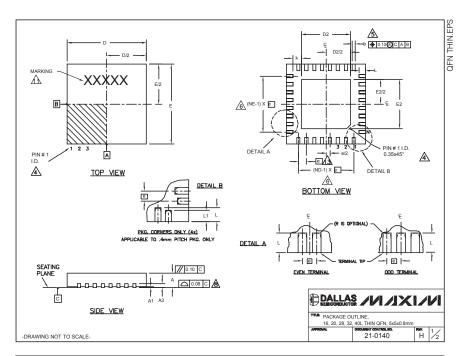
Table 3. Component Values for Typical Application Circuit

COMPONENT	VALUE FOR 433.92MHz RF	VALUE FOR 315MHz RF	DESCRIPTION
C1	220pF	220pF	10%
C2	680pF	680pF	10%
C3	6.8pF	12pF	5%
C4	6.8pF	10pF	5%
C5	10pF	22pF	5%
C6	220pF	220pF	10%
C7	0.1µF	0.1µF	10%
C8	100pF	100pF	5%
C9	1.8pF	2.7pF	±0.1pF
C10	100pF	100pF	5%
C11	220pF	220pF	10%
C12	100pF	100pF	5%
C13	1500pF	1500pF	10%
C14	0.047µF	0.047µF	10%
C15	0.047µF	0.047µF	10%
C16	470pF	470pF	10%
C17	220pF	220pF	10%
C18	220pF	220pF	10%
C19	0.01µF	0.01µF	10%
C20	100pF	100pF	5%
C21	100pF	100pF	5%
C22	220pF	220pF	10%
C23	0.01µF	0.01µF	10%
C24	0.01µF	0.01µF	10%
L1	22nH	27nH	Coilcraft 0603CS
L2	22nH	30nH	Coilcraft 0603CS
L3	22nH	30nH	Coilcraft 0603CS
L4	10nH	12nH	Coilcraft 0603CS
L5	16nH	30nH	Murata LQW18A
L6	68nH	100nH	Coilcraft 0603CS
R1	100kΩ	100kΩ	5%
R2	100kΩ	100kΩ	5%
R3	0Ω	0Ω	_
Y1	17.63416MHz	12.67917MHz	Crystal, 4.5pF load capacitance
Y2	10.7MHz ceramic filter	10.7MHz ceramic filter	Murata SFECV10.7 series

Note: Component values vary depending on PC board layout.


Typical Application Circuit

Chip Information


PROCESS: CMOS

Functional Diagram

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS												EXPOSED PAD VARIATIONS													
PKG.		16L 5x5		20L 5x5		28L 5x5		32L 5x5		40L 5x5		1	PKG	D2			E2			L	DOWN				
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.		NOM.	MAX.		1	CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	±0.15	BONDS ALLOWED						
Α		0.75	_	0.70	_	_	_	_	0.80	_	0.75		0.70				T1655-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO
A1	0	0.02		_	_	0.05	0	0.02	0.05	0	0.02	0.05	_	_	0.05	1	T1655-2	3.00	3.10	3.20	3.00	3.10	3.20	**	YES
A3	0.20 REF. 0.20 REF. 0.25 0.30 0.35 0.25 0.30 0		_	0.20 REF.		0.20 REF.		0.20 REF.				T1655N-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO					
b				0.20												1	T2055-2	3.00	3.10	3.20	3.00	3.10	3.20	**	NO
D		5.00		4.90									4.90				T2055-3	3.00	3.10	3.20	3.00	3.10	3.20	**	YES
E	4.90	5.00 0.80 Bs		4.90				5.00		4.90	5.00				5.10	1	T2055-4	3.00	3.10	3.20	3.00	3.10	3.20	**	NO
e k	0.25		5U.	0.0	35 B	SU.	0 25	.50 BS	5U.	0.25	.50 B	oU.	_	.40 B	_	1	T2055-5	3.15	3.25	3.35	3.15	3.25	3.35	0.40	YES
L		0.40	0.50	0.25		0.65	0.20	0.55	0.65	0.25	0.40	0.50	0.20	0.35		1	T2855-1	3.15	3.25	3.35	3 15	3.25	3.35	**	NO
11	0.30	0.40	0.30	0.43	0.00	0.00	0.43	-	0.00	0.30	-	0.30	0.40	-	0.50	1	T2855-2	2.60	2.70	2.80	2.60	2.70	2.80	**	NO
N	÷	16			20		H	28	_	<u> </u>	32	-	0.30	40	10.00	1	T2855-3	3.15	3.25	3.35	3.15	3.25	3.35	**	YES
ND	\vdash	4		5		7		8		10		1	T2855-4	2.60	2.70	2.80	2.60	2.70	2.80	**	YES				
NE		4		5		7		-	8		10		1	T2855-5	2.60	2.70	2.80	2.60	2.70	2.80	**	NO			
JEDEC		WHHE	3	V	VHH	0	٧	VHHD	-1	V	VHHD	-2				1	T2855-6	3.15	3.25	3.35	3.15	3.25	3.35	**	NO
																	T2855-7	2 60	2.70	2.80	2.60	2 70	2.80	**	YES
																	12855-7								
OTES:																	T2855-7	3.15	3.25	3.35	3.15	3.25	3.35	0.40	YES
OTES: 1. DIMI	ENSI	ONING	& TOL	ERAN(CING	CONF	ORM	TO AS	ME Y	14.5M-	1994.						T2855-8 T2855N-1	3.15 3.15	3.25 3.25	3.35	3.15	3.25	3.35	**	NO
OTES: 1. DIMI 2. ALL																	T2855-8 T2855N-1 T3255-2	3.15 3.15 3.00	3.25 3.25 3.10	3.35 3.20	3.15 3.15 3.00	3.25 3.10	3.35 3.20	**	NO NO
1. DIMI	DIME	NSION	IS ARE	IN MI	LIME	TERS	. ANG										T2855-8 T2855N-1 T3255-2 T3255-3	3.15 3.15 3.00 3.00	3.25 3.25 3.10 3.10	3.35 3.20 3.20	3.15 3.15 3.00 3.00	3.25 3.10 3.10	3.35 3.20 3.20	**	NO NO YES
1. DIMI 2. ALL 3. N IS	DIME	NSION	S ARE	IN MI	LIME	TERS	. ANG	LES A	RE IN	DEG	REES.	AOITA	I SHAL	L			T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4	3.15 3.15 3.00 3.00 3.00	3.25 3.25 3.10 3.10 3.10	3.35 3.20 3.20 3.20	3.15 3.15 3.00 3.00 3.00	3.25 3.10 3.10 3.10	3.35 3.20 3.20 3.20	**	NO NO YES NO
1. DIMI 2. ALL 3. N IS A THE CON	THE TER NFOR	TOTAL MINAL MI TO J	IS ARE NUM #1 IDE IESD 9	E IN MII BER OI NTIFIE 95-1 SP	TEF R AN	RMINA ND TEI 2. DE	S. ANG LS. RMINA FAILS	LES A	RE IN	DEGI NG CI AL #1	ONVEI	IFIER	ARE				T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1	3.15 3.15 3.00 3.00 3.00 3.00	3.25 3.25 3.10 3.10 3.10 3.10	3.35 3.20 3.20 3.20 3.20	3.15 3.15 3.00 3.00 3.00 3.00	3.25 3.10 3.10 3.10 3.10	3.35 3.20 3.20 3.20 3.20	**	NO NO YES NO NO
1. DIMI 2. ALL 3. N IS CON OPT	THE TER NFOR	TOTAL MINAL MI TO J AL, BUT	NUM #1 IDE ESD 9	E IN MII BER OI ENTIFIE 95-1 SP F BE LO	R AN P-01:	ETERS RMINA ND TEI 2. DE ED WI	E. ANG LS. RMINA FAILS	L NUM OF TE	RE IN	DEGI NG CI AL #1 NDICA	ONVEI	IFIER	ARE		-1		T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4	3.15 3.15 3.00 3.00 3.00	3.25 3.25 3.10 3.10 3.10	3.35 3.20 3.20 3.20	3.15 3.15 3.00 3.00 3.00	3.25 3.10 3.10 3.10	3.35 3.20 3.20 3.20	**	NO NO YES NO
1. DIMI 2. ALL 3. N IS COPT OPT IDE DIMI 0.25	DIME THE TER NFOR TIONA NTIFI ENSIGNME	TOTAL MINAL M TO J AL, BUT ER MA' ON b A AND 0.	IS ARE NUM #1 IDE IESD 9 MUS Y BE E PPLIE:	EIN MII BER OI ENTIFIE 05-1 SP F BE LO EITHER S TO M I FROM	ER AM P-01: OCAT A MI	ETERS RMINA ND TEI 2. DE ¹ ED WI DLD O LLIZED	S. ANG LS. RMINA FAILS ITHIN R MAI TERI TIP.	LES A L NUM OF TE THE Z RKED MINAL	MBERI RMIN ONE I FEATI AND	DEGR NG CI AL #1 NDICA JRE.	ONVEI IDENT ITED.	THE T	ARE ERMII	NAL#			T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1	3.15 3.15 3.00 3.00 3.00 3.00	3.25 3.25 3.10 3.10 3.10 3.10	3.35 3.20 3.20 3.20 3.20	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.10 3.10 3.10 3.10 3.30	3.35 3.20 3.20 3.20 3.20 3.40	**	NO NO YES NO NO
1. DIMI 2. ALL 3. N IS THE CONTOPT IDE	DIME THE TER NFOR TIONA NTIFI ENSIGNME	TOTAL MINAL M TO J AL, BUT ER MA' ON b A AND 0.	IS ARE NUM #1 IDE IESD 9 MUS Y BE E PPLIE:	EIN MII BER OI ENTIFIE 05-1 SP F BE LO EITHER S TO M I FROM	ER AM P-01: OCAT A MI	ETERS RMINA ND TEI 2. DE ¹ ED WI DLD O LLIZED	S. ANG LS. RMINA FAILS ITHIN R MAI TERI TIP.	LES A L NUM OF TE THE Z RKED MINAL	MBERI RMIN ONE I FEATI AND	DEGR NG CI AL #1 NDICA JRE.	ONVEI IDENT ITED.	THE T	ARE ERMII	NAL#		LY.	T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1	3.15 3.15 3.00 3.00 3.00 3.00	3.25 3.25 3.10 3.10 3.10 3.10	3.35 3.20 3.20 3.20 3.20	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.10 3.10 3.10 3.10 3.30	3.35 3.20 3.20 3.20 3.20 3.40	**	NO NO YES NO NO YES
1. DIMI 2. ALL 3. N IS COPT OPT IDE DIMI 0.25	THE TER NFOR FIONA NTIFI ENSIGNMENT SIMMENT	TOTAL MINAL	H IDE H IDE ESD S MUST Y BE E PPLIE: 30 mm	E IN MII BER OF ENTIFIE 95-1 SP F BE LC EITHER S TO M FROM THE I	ETAL TER P-01: DCAT A MI	ETERS RMINA ND TEI 2. DE ED WI DLD O LIZEE MINAL BER O	E. ANG LS. RMINA FAILS ITHIN R MAI TERI TIP.	L NUI OF TE THE Z RKED MINAL	MBERI RMIN ONE I FEATU AND	NG CI AL #1 NDICA JRE. IS ME	ONVEI IDENT ITED.	THE T	ARE ERMII	NAL#		LY.	T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1	3.15 3.15 3.00 3.00 3.00 3.00	3.25 3.25 3.10 3.10 3.10 3.10	3.35 3.20 3.20 3.20 3.20	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.10 3.10 3.10 3.10 3.30	3.35 3.20 3.20 3.20 3.20 3.40	**	NO NO YES NO NO YES
1. DIMI 2. ALL 3. N IS COPTOPT IDE S DIM 0.25 ND / 7. DEF	THE TER NFOR FIONA NTIFI ENSIGNED AND I	TOTAL MINAL	IS ARE NUM #1 IDE IESD 9 MUST Y BE E PPLIE: 30 mm ER TO	E IN MII BER OF S-1 SP F BE LO EITHER S TO M FROM O THE I	ETAL TER P-01: OCAT A MO ETAL I TER NUMI	ETERS RMINA ND TEI 2. DE ED WI DLD O LIZEE MINAL BER O A SYN	E. ANG LS. RMINA FAILS ITHIN R MAI TERI TIP. F TERI IMETR	LES A L NUM OF TE THE Z RKED MINAL MINAL	MBERI RMIN ONE I FEATI AND LS ON	DEGI NG CI AL #1 NDICA JRE. IS ME. EACH	REES. ONVEI IDENT TED. ASURE	THE	ARE TERMII TWEE	NAL#	CTIVE	LY.	T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1	3.15 3.15 3.00 3.00 3.00 3.00	3.25 3.25 3.10 3.10 3.10 3.10	3.35 3.20 3.20 3.20 3.20	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.10 3.10 3.10 3.10 3.30	3.35 3.20 3.20 3.20 3.20 3.40	**	NO NO YES NO NO YES
1. DIMI 2. ALL 3. N IS COPOPPI IDE S DIM 0.25 ND / 7. DEF 8 COP 9. DRA	DIME THE TER NFOR TIONA NTIFI ENSIG S mm.	ENSION TOTAL MINAL MINAL MI TO J AL, BUT ER MA' ON 6 AI AND 0: NE REF LATION ARITY	IS ARE NUM #1 IDE IESD S MUST Y BE E PPLIE 30 mm ER TO I IS PO APPLIE FORM	E IN MII BER OF ENTIFIE 05-1 SP F BE LC EITHER S TO M FROM D THE I DSSIBL ES TO J	ER AN P-01: OGAT A MI ETAL I TER NUMI E IN .	ETERS RMINA ND TEI 2. DET ED WI DLD O LIZED MINAL BER O A SYN	E. ANG LS. RMINA FAILS ITHIN R MAA TERM TIP. F TERM IMETE SED H	LES A L NUM OF TE THE Z RKED MINAL MINAL EAT S	MBERI RMIN ONE I FEATU AND LS ON FASHI INK S	DEGI NG CI AL #1 NDICA JRE. IS ME. EACH ON.	REES. DIVEI IDENT TED. ASURE H D AN	THE THE TO BE	ARE TERMINET REPORTED TO THE TERMINET REPORTED	NAL# N ESPE	CTIVE		T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1	3.15 3.15 3.00 3.00 3.00 3.00	3.25 3.25 3.10 3.10 3.10 3.10	3.35 3.20 3.20 3.20 3.20	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.10 3.10 3.10 3.10 3.30	3.35 3.20 3.20 3.20 3.20 3.40	**	NO NO YES NO NO YES
1. DIMI 2. ALL 3. N IS THE COP OPT IDE S DIM 0.25 ND 7. DEF COP 9. DRA T28	DIME THE TER NFOR TIONA NTIFI ENSIGN AND I POPUL PLANA AWING 55-3,	ENSION TOTAL MINAL MINAL MI TO J AL, BUT ER MA' ON 6 A AND 0.: NE REF LATION ARITY / G CONI	IS ARE NUM #1 IDE IESD 9 MUST Y BE E PPLIE: 30 mm ER T(I IS PC APPLIE FORM: 2855-6	E IN MII BER OF ENTIFIE 05-1 SP F BE LC EITHER S TO M FROM T FROM T THE I DSSIBL ES TO JI	TER AN P-01: A MM ETAL I TER NUMI E IN . THE I	ETERS RMINA ND TEI 2. DET ED WI DLD O LIZEE MINAL BER O A SYN EXPOS MO2	ANG LS. RMINA FAILS ITHIN TERM TERM TIP. F TERM IMETE SED H	LES A L NUM OF TE THE Z RKED MINAL MINAL EAT S	MBERI RMIN ONE I FEATU AND LS ON FASHI INK S	DEGI NG CI AL #1 NDICA JRE. IS ME. EACH ON.	REES. DIVEI IDENT TED. ASURE H D AN	THE THE TO BE	ARE TERMINET REPORTED TO THE TERMINET REPORTED	NAL# N ESPE	CTIVE		T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.25 3.10 3.10 3.10 3.30 3.30	3.35 3.20 3.20 3.20 3.20 3.40	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.10 3.10 3.10 3.30 3.30 SEE CO	3.35 3.20 3.20 3.20 3.20 3.40 MMON E	** ** ** ** ** ** ** DIMENSIG	NO NO YES NO NO YES
1. DIMI 2. ALL 3. N IS THE COP OPT IDE S DIM 0.25 ND 7. DEF COP 9. DRA T28	DIME THE THE TERNIFOR TIONA NTIFI ENSIGN THE	ENSION TOTAL MINAL M TO J AL, BUT ER MA ON b A AND 0: NE REF LATION ARITY A G CONI AND T2 E SHAL	IS ARE NUM #1 IDE IESD 9 MUST Y BE E 30 mm ER TO I IS PO APPLIE ORM: 2855-6	E IN MII BER OF ENTIFIE 95-1 SP F BE LC EITHER S TO M FROM O THE I DOSSIBL ES TO S TO JI F EXCE	TEFE IN THE I	ETERS RMINA ND TEI 2. DE' ED WI DLD O LIZEE MINAL BER O A SYN EXPOS O MO2	E. ANG LS. RMINA FAILS ITHIN R MAI TERI TIP. F TERI IMETE SED H 20, EX	LES A L NUM OF TE THE Z RKED WINAL MINAL RICAL EAT S CEPT	MBERING STATE OF THE STATE OF T	DEGI NG CI AL #1 NDICA JRE. IS ME EACH ON. LUG A	REES. ONVEI IDENT ASURE H D AN AS WE PAD D	THE THE TO BE	ARE TERMINET REPORTED TO THE TERMINET REPORTED	NAL# N ESPE	CTIVE		T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.25 3.10 3.10 3.10 3.30 3.30	3.35 3.20 3.20 3.20 3.20 3.40	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.10 3.10 3.10 3.30 3.30 SEE CO	3.35 3.20 3.20 3.20 3.20 3.40 MMON E	** ** ** ** ** ** ** DIMENSIG	NO NO YES NO NO YES
1. DIMI 2. ALL 3. N IS A THE COP OPT IDE DIM 0.25 ND 7. DEF COP 9. DRA T28 WAR	DIME THE TERNFOR TIONA NTIFI ENSIGN AND I POPUL S55-3, RPAGI	ENSION TOTAL MINAL M TO J AL, BUT ER MA ON 6 A AND 0: NE REF LATION ARITY A G CONI AND T2 E SHAL G IS FOI	IS ARE NUM #1 IDE IESD 9 MUST Y BE E PPLIE: 30 mm ER T(I IS PC APPLIE FORM: 2855-6 L NOT	EIN MII BER OF ENTIFIE 55-1 SP F BE LC EITHER S TO M FROM O THE I DSSIBL ES TO S T TO JI C EXCE	LLIME TER AN P-012 OCAT A MI ETAL I TER NUMB ETAL I THE I OCAT OCAT OCAT OCAT OCAT OCAT OCAT OCAT	ETERS RMINA ND TEI 2. DET ED WI OLD O LIZEE MINAL BER O A SYN EXPOS O MO2	S. ANG LS. RMINA FAILS ITHIN R MAI TIP. F TER IMETR SED H 20, EX ON RI	LES A L NUM OF TE THE Z RKED WINAL MINAL EAT S CEPT	MBERINONE I FEATU AND LS ON FASHI INK S EXPC	DEGREE NG CI AL #1 NDICA NG CI AL #1 NDICA NG CI AL WE AL	REES. ONVEI IDENT ASURE H D AN AS WE PAD D	THE THE TO BE	ARE TERMINET REPORTED TO THE TERMINET REPORTED	NAL# N ESPE	CTIVE		T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.25 3.10 3.10 3.10 3.30 3.30	3.35 3.20 3.20 3.20 3.40	3.15 3.15 3.00 3.00 3.00 3.00 3.20	3.25 3.10 3.10 3.10 3.10 3.30 SEE CO	3.35 3.20 3.20 3.20 3.20 3.40 MMON E	** ** ** ** ** ** ** DIMENSIG	NO NO YES NO NO YES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 20